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The flow in a channel with an oscillating constriction has been studied by the 
numerical solution of the Navier-Stokes and Euler equations. A vorticity wave is 
found downstream of the constriction in both viscous and inviscid flow, whether the 
downstream flow rate is held constant and the upstream flow is pulsatile, or vice 
versa. Closed eddies are predicted to form between the crests/troughs of the wave 
and the walls, in the Euler solutions as well as the Navier-Stokes flows, although 
their structures are different in the two cases. 

The positions of wave crests and troughs, as determined numerically, are 
compared with the predictions of a small-amplitude inviscid theory (Pedley & 
Stephanoff 1985). The theory agrees reasonably with the Euler equation predictions 
a t  small amplitude (€5 0.2) as long as the downstream flow rate is held fixed; 
otherwise a sinusoidal displacement is superimposed on the computed crest positions. 
At larger amplitude (e = 0.38) the wave crests move downstream more rapidly than 
predicted by the theory, because of the rapid growth of the first eddy (‘eddy A’)  
attached to the downstream end of the constriction. At such larger amplitudes the 
Navier-Stokes predictions also agree well with the Euler predictions, when the 
downstream flow rate is held fixed, because the wave generation process is essentially 
inviscid and the undisturbed vorticity distribution is the same in each case. It is quite 
different, however, when the upstream flow rate is fixed, as in the experiments of 
Pedley & Stephanoff, because of differences in the undisturbed vorticity distribution, 
in the growth rate of the vorticity waves and in the dynamics of eddy A. A further 
finite-amplitude effect of importance, especially in an inviscid fluid, is the interaction 
of an eddy with its images in the channel walls. 

1. Introduction 
The flow in a two-dimensional channel with a moving indentation in one wall has 

recently been studied experimentally (Stephanoff et aE. 1983 ; Pedley & Stephanoff 
1985) and numerically (Ralph & Pedley 1988), as a step towards understanding 
unsteady, separated, internal flows in general, and self-sustained oscillations in 
flexible-walled tube flows in particular. (The above papers will hereinafter be referred 
to as I, I1 and 111, respectively.) The indentation was made to oscillate sinusoidally 
between a flush and an indented position. The experiments revealed the generation 
of a train of vorticity waves downstream of the indentation, with closed eddies 
between the crests/troughs of the wave and the wall. Under some circumstances 
certain of these eddies split, each into a pair of corotating parts (‘eddy doubling’). 

t Present address: Smith Associates Ltd.. Surrey Research Park, Guildford, Surrey GU2 5YP, 
UK. 
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All these features were reproduced by the Navier-Stokes solutions of 111, at  three 
different pairs of values of the Reynolds number Re( = aU,/v, where a is the 
undisturbed channel width, U, is the average velocity of the flow upstream and v is 
the kinematic viscosity of the fluid) and Strouhal number St( = a/U, T where T is the 
oscillation period) ; in each case the amplitude parameter E was held fixed at  0.38. 

In I and I1 an inviscid, small-amplitude theory was proposed which correctly 
reproduced the generation and propagation of vorticity waves but could not explain 
the formation of the closed eddies or the eddy doubling. Quantitative comparison of 
the theory with experiment was made by plotting the locations of the wave crests 
and troughs (hereinafter referred to simply as ‘crests’) in the form of graphs of their 
longitudinal coordinates ax, (relative to the end of the indentation) as functions of 
time t .  The theory suggested that the results should be of the form 

x, St: = f(t ; E l ) ,  

where el cc eStf is a measure of amplitude and f is a dimensionless function which 
depends only very weakly on E , .  The theory being inviscid, no dependence on Re was 
predicted. 

The experimental results indeed indicated no systematic dependence of x, on Re 
(for 480 d Re d 950) for any value of St in the range 0.007 to 0.057 (figures 9 and 11 
of 11). They also confirmed that x,Sti was independent of St in that range, but only 
during the first half of the cycle (t  < 0.5); later in the cycle, the values of x,Stt 
increased with t less rapidly for larger values of St (e.g. figure 12 of 11). Good 
quantitative agreement between theory and experiment (and Navier-Stokes 
solutions) was achieved throughout the cycle for the more upstream waves at  the 
largest value of St examined (0.057 ; see figure 16 of 11 and figure 13 of HI), but the 
more downstream waves were not as far downstream as predicted. Thus the 
wavelength was overestimated in the theory although the phase velocity was well 
predicted, a t  larger St. At smaller St the phase velocity was underestimated (figure 
18 of 11). 

These results have led us to conclude that the wave generation and propagation 
process is essentially inviscid, and is not greatly affected by the viscous processes 
taking place in the eddies, as discussed in 111. However, significant questions still 
remain. In  particular, are the quantitative disagreements between the simple theory 
and the actual waves a consequence of the neglect of viscosity, as suggested by the 
fact that agreement is worse at the lower values of St, when the dynamics might be 
expected to be more quasi-steady and viscosity can therefore not be neglected? 
Alternatively, are they primarily caused by the small-amplitude assumption in the 
theory, with viscosity unimportant a t  all St, as suggested by the Reynolds-number 
independence of the experimental results ? The fact that the theory was based on a 
series expansion in powers of e that was truncated a t  O(E*) has two apparently 
distinct consequences. One is the obvious one that the fully nonlinear waves are 
likely to be severely distorted from the predictions of a weakly nonlinear theory, 
leading to considerable errors in the predictions of phase velocity and wavelength. 
The other stems from the fact that thein-and-out movement of the indentation must 
be accompanied by a bulk acceleraticn and deceleration of the flow downstream or 
upstream (or both). In  the experiments and in the Navier-Stokes solutions of I11 the 
upstream flow rate was held constant. However, the theory takes no account of this 
effect, because i t  does not come in until the next order in E (but see the footnote in 
§7.1) ,  so there could be better agreement between the theory and a Navier-Stokes 
solution in which the downstream flow rate is held constant. 
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The aim of the present work is to try to answer the above questions, and further 
elucidate the physical mechanisms underlying the flows in question, by obtaining 
numerical solutions of the inviscid Euler equations for direct comparison with 
numerical solutions of the viscous Navier-Stokes equations with the same parameter 
values and the same up- and downstream conditions. Since agreement between 
experiment and Navier-Stokes solutions (for a range of Re and St) have been 
established in 111, we concentrate here on one particular case, called ‘run 4’  in I1 and 
‘case I ’  in 111, with St = 0.037 and (for the NavierStokes solution) Re = 507. 

The geometry and formulation of the problem are similar to those given in 111, 
with the differences being described in $2, below; in $3, the finite-difference 
methods used are described. The results are presented and discussed in $$4, 5 and 6 ;  
in $4 we give the inviscid flow patterns with E = 0.38 and the upstream flow rate 
fixed, for comparison with the viscous results of 111; in $5 we retain the same fixed 
amplitude and investigate the changes in the results when the downstream flow rate 
is held fixed; in $6 we examine the effects of varying E.  Further discussion and 
conclusions are presented in $7 .  

2. Formulation 
The formulation follows I11 very closely, and we use the same notation here. The 

computational domain is shown in figure 1 ; the walls of the channel are given by 
y = 1 and y = F(x ,  t )  = g(x) h(t) ,  where h(t) = 0 for t < 0, h(t) = +( 1 - cos 2nt) for t 2 0, 
and g(z) = 0 for z < x2 and x 2 z5, g(x) > 0 for x2 < x < z5 (g(z) is specified precisely 
in equation (17) of 111). The domain is made steady and rectangular by means of the 
transformation z = ( y - F ) / ( l  - F ) ,  and the Navier-Stokes equations, in terms of 
stream function 11. and vorticity 5, become 

and -5 = V2$, (2) 

where p,(x, t )  and p4(x ,  z ,  t )  depend on F(x ,  t )  and its derivatives; two other functions 
p 2  and p ,  arise in the transformation of the V 2  operator (see 111 for details). The Euler 
equations are identical except for omission of the viscous term, proportional to l/a2, 
in (1).  The initial condition is that there is Poiseuille flow everywhere, with 

$ = z 2 ( 3 - 2 z ) ,  c =  6 ( 2 ~ - 1 ) .  (3) 

111 deals only with cases in which the flow rate upstream of the indentation is 
fixed, and, where such flows are considered here, the value of the stream function on 
the indented wall z = 0 is given by 

(4) 

while 11. = 1 on y = z = 1. For flows in which the downstream flow rate is to  be held 
constant, this equation is replaced by 

in which the integral takes negative values for points on and upstream of the 
indentation ( x  < z5) and is zero downstream ( x  > x5). Thus, the stream function on 
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FIGURE 1. Representation of the computational domain. Lines of constant z and constant 2 are 
shown at  the time of maximum indentation, and the y-scale is expanded by a factor of 2 compared 
with the 2-scale. (From 111). 

the indented wall is greater than zero for x < x6 when the piston is advancing into 
the channel, and, since $ is held constant a t  a value of unity on the other wall, this 
corresponds to the required reduced upstream flow rate. The boundary conditions far 
upstream and downstream require parallel flow and Poiseuille flow respectively when 
the downstream flow rate is fixed; the two are transposed, as in 111, when the 
upstream flow rate is fixed. 

3. Numerical methods 
The finite-difference methods used to solve the Navier-Stokes equations for 

viscous flow were identical with those employed in 111, except when simulating flows 
in which the downstream flow rate was held fixed. The small changes necessitated in 
such cases are described in $3.1, below. 

The method of solution of the Euler equations governing the inviscid problem was 
developed from that used to  solve the Navier-Stokes equations, and thus a stream 
function-vorticity formulation was employed with central, second-order spatial 
differences in the vorticity transport and stream function equations. The Poisson 
equation for the stream function was solved as in 111, whilst the schemes employed 
for the vorticity transport equation are given in $3.2, below. The numerical 
boundary conditions are described in $3.3. 

3.1. Viscous j b w s  with downstream $ow rate $xed 

The numerical boundary conditions a t  the inlet boundary, x = x l ,  were obtained by 
assuming the flow there to be parallel with the unindented channel walls. This gives 
rise to a one-dimensional diffusion equation for the vorticity a t  inlet, which was 
updated using central space differencing and leapfrog time differencing with the 
Dufort-Frankel substitution, as for internal points. Wall values of vorticity a t  inlet 
were obtained by a first-order evaluation of a2$/az2. Nodal values of the stream 
function at x = x1 satisfied a tridiagonal system, which was solved by the usual 
algorithm (see Roache 1976, for example), whilst values of y% on the lower wall were 
obtained by evaluating equation (1) a t  each wall node. Otherwise, solutions for flows 
in which the downstream flow rate was held fixed were obtained in the same way as 
for those in which the upstream flow rate remained constant (see 111). 

3.2. The vorticity transport equation in inviscid $ow 

Central, second-order space differencing and explicit, leapfrog time differencing were 
used in the vorticity transport equation, as for the viscous problem in 111 (the 
Dufort-Frankel substitution being unnecessary in the absence of diffusive terms). 
With a mesh spacing, h,  of&, and a typical time-step size, k, of 1/4000, this method 
gave apparently stable solutions and smooth instantaneous streamline plots. 
However, inspection of the corresponding vorticity contour plots showed the 
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presence of spatial oscillations in vorticity, with a wavelength on the grid scale and 
an amplitude which was a significant fraction of the vorticity range. The use of an 
alternative time-differencing method (second-order Adams-Bashforth) and of time- 
like filters had little effect on the oscillations, and it was concluded that they were 
‘ wiggles ’, as described in Roache (1976), resulting from the use of central differences 
in space in the presence of large vorticity gradients. 

In  order to eliminate the oscillations, a spatial filter was employed, but, since a 
principal objective of the study was to investigate differences between viscous and 
inviscid flows, i t  was important to use a method that would not be equivalent to 
simply introducing viscosity. The technique adopted was that used by Myers, Taylor 
& Murdock (1981) in pseudo-spectral inviscid flow calculations. Under this scheme, 
changes in the vorticity, 6, due to convection in the x-direction were computed first, 
and then filtering in this direction was carried out only where oscillations on the grid 
scale were found. Vorticity changes due to y-direction convection were then 
calculated and the required filtering again carried out. Details of the filtering 
techniques are described in the appendix: we may note that computations with 
filtering required about twice as much computer time as unfiltered runs. The results 
show a large reduction in the amplitude of the wiggles, although the vorticity 
variation is still not completely smooth (see figures 2 b  and 4, below). 

As a check on the numerical accuracy of the scheme, and in order to verify that. 
the spatial oscillations were indeed an artifact, filtered and unfiltered calculations 
were carried out with three different mesh sizes, h = &, h = & and h = &, for a typical 
flow. I n  each of the unfiltered runs, the wiggles had a wavelength of 2h, showing them 
to be unphysical, as expected. Their effects on the overall flow structure were small, 
however, and comparison of the variation with x of the centreline stream function, 
kCL, showed very little effect of changes in mesh size or of the presence or absence 
of filtering. Filtered results for a typical time in the flow cycle are shown in figure 2 (a) .  

Figure 2 ( b )  shows the variation with x (for x > 0) of the vorticity, cl, a t  z = 0.875 
in filtered calculations for the three mesh sizes given above. All the curves show some 
residual wiggles, although the amplitude of these is small compared with the 
vorticity range. The abrupt peaks near x = 2.5 and x = 5.5 appear to be genuine 
features, since they occur for each mesh size, and become more acute as the mesh is 
refined. We regard the vorticity curves for the two finest meshes as being close 
enough to indicate that reasonably accurate solutions may be obtained by utilizing 
the mesh size h = A: all the results given below have been obtained using such a grid, 
in filtered computations. Finally, we note that in inviscid flow the vorticity should 
be bounded by the range of initial values and those imposed a t  the inflow boundaries, 
that is, the range -6  to + 6 in the present problem. Whilst discretization errors may 
cause these bounds to be exceeded (maximum and minimum vorticity values in a 
typical case are given in the legend for figure 4, below, showing values of 161 up to 6.8), 
this only occurs in very small, isolated regions of the solution domain, mainly within 
eddy A; in the ‘worst case’ o f t  = 0.75, 1([12 6.2 a t  fewer than 0.3% of the nodes. 

3.3. Boundary conditions in inviscid flow 
Boundary values of the stream function, k, in inviscid flow were determined just as 
for viscous flow, and no further description is given here. On the other hand, the 
boundary vorticity requires different treatment. At x = x,, which in all flows is a 
mean inlet boundary, the vorticity profile is taken to be linear, corresponding to 
Poiseuille flow at the mean flow rate. This gives a parabolic velocity profile, with a 
time-varying slip velocity at the walls in the cases of non-constant upstream flow 



548 

(4 

M .  E .  Ralph and T. J .  Pedley 

- .  I 

-12 -10 - 8  -6  - 4  -2  0 2 4 6 8 10 12 

X 

1 2  3 4 5 6 7 8 9 10 11 12 13 
- 1  X 

FIQURE 2(a ,b) .  For caption see facing page. 

rate. The downstream boundary condition of 111 was found to lead to instability 
when applied a t  x = x, in inviscid flow calculations, and was replaced by a method 
based on that of Shapiro & O’Brien (1970). Under this scheme, the positions at  the 
previous time step of fluid particles currently situated a t  outlet nodes are first 
determined by interpolation of the local velocity field. The vorticity carried by each 
particle is then calculated by interpolation based on its position in the ‘old’ vorticity 
field: since fluid elements retain their vorticity in inviscid flow, the vorticity assigned 
to each outlet node is simply that of the corresponding fluid particle a t  the previous 
time step. Where the axial velocity is negative a t  x = x6, Poiseuille flow values of 
vorticity are assigned to the relevant nodes. To assess the effects of imposing the 
boundary conditions at a finite distance from the indentation, a computation was 
carried out in which the upstream and downstream boundaries were moved upstream 
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FIGURE 2. (a )  Variation of the centreline stream function with axial position at t = 0.75 in a typical 
inviscid flow (St = 0.037, E = 0.38, upstream flow rate fixed): h = 1/48 (solid curve); h = 1/32 
(long-and-short-dashed curve) ; h = 1/24 (long-dashed curve). ( b )  Variation of vorticity at 
z = 0.875 and t = 0.75 in the same flow, with the same mesh sizes as in (a). (c) Variation of centreline 
stream function in the same flow at t = 0.90 with h = 1/32; z1 = - 13.75, zB = 13.25 (solid curve); 
2, = - 15.75, x6 = 11.25 (dashed curve). 

by two channel widths from the locations used throughout the rest of this work 
(x, = - 13.75, x2 = 13.25). The results are illustrated in figure 2 (c) for a time t = 0.90. 
It can be seen that in the region of primary interest (x > 0) the effect of the shift in 
the upstream boundary is undetectable on this plot, whilst that of the downstream 
boundary shift is small and confined to the vicinity of x6. I n  discussing the results 
below, we restrict attention to x < x6-2, and we are confident that they are 
unaffected by the computational boundary positions. 

Values of vorticity a t  the walls are determined using a one-sided finite-difference 
form of (2). However, since the no-slip condition is not applicable in inviscid flow, 
this equation cannot be simplified in the same way as in the viscous case; in 
particular, the Woods boundary condition (Roache 1976, p. 141) cannot be applied. 
A first-order scheme was therefore adopted. 

4. Results: comparison of viscous and inviscid flows 
Instantaneous streamlines for a typical inviscid flow, in which the upstream flow 

rate is held fixed, are given in figure 3. The contour values of the stream function 
have been selected according to (23)-(25) of 111, and @,,,, and @, are as defined 
there. The parameter values are such as to permit direct comparison with the viscous 
flow depicted in figure 4 of 111. Many features of the inviscid flow are similar to those 
observed experimentally and predicted by the Navier-Stokes calculations. Thus, the 
core flow downstream of the indentation becomes progressively wavy, and the front 
of the wave eventually propagates much more rapidly than any individual crest or 
trough. Furthermore, regions with closed streamlines ('eddies ') develop between the 
crests/troughs and the wall, and each of these grows in lateral extent until it occupies 
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FIGURE 3. Instantaneous streamline plots for a typical inviscid flow (St = 0.037, E = 0.38, upstream 
flow rate fixed): (a )  @max = 1.000, @-,,, = -0.441, @w = -0.441; (6) 1.000, -0.464, -0.464; (c) 
1,000, -0.337, -0.273; ( d )  1.001, -0.258, -0.143; ( e )  1.011, -0.180, 0;  (f) 1.038, -0.086,0.143; 
(y) 1.084, -0.043, 0.273; (h)  1.148, 0.012, 0.375; (i) 1.206, 0.049,0.441; (j) 1.244, 0.064, 0.464; ( k )  
1.215, -0.026, 0.273; ( 1 )  1.139, -0.193, 0. 
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about half of the channel width. Thus the generation of eddies is not a necessarily 
viscous process. 

There are, however, several respects in which the inviscid flow differs from the 
viscous case. The development of significant amplitude in the more downstream 
waves seems to be delayed in the inviscid case, and eddy B does not propagate 
significantly between about t = 0.45 and t = 0.75. The remaining differences are 
primarily concerned with the shapes and structures of the eddies, labelled for 
convenience as in figure 3(j). Thus, eddy A, in the inviscid case, grows to become 
significantly larger in lateral (though not longitudinal) extent than the corresponding 
eddy in viscous flow. All of the eddies show a much greater degree of fore-aft 
symmetry in inviscid flow, and there is certainly no eddy doubling or even kinking 
of the dividing streamlines. On the other hand, there is not a great difference in the 
eddy strengths during the middle part of the flow cycle in the two cases, and a t  
t = 0.60, for example, the value of ($max- l ) ,  representing the strength of eddy B, is 
0.109 in the viscous case and 0.084 in the inviscid case : in the inviscid case, however, 
the eddy strength continues to increase until rather later in the flow cycle, attaining 
its maximum value of 0.254 a t  t = 0.80, compared with t = 0.60 in the viscous flow, 
We also note that there is no decay in the amplitude of the wave or the strengths of 
the eddies near the end of the inviscid flow cycle, nor do the eddies appear to be swept 
away downstream; there is no mechanism for damping the wave in inviscid flow. 
This means that after more than one cycle the inviscid flow will be different from that 
computed here, just one cycle after the initial state of unperturbed Poiseuille flow. 
However, it is differences between the viscous and inviscid development of the flow 
during the first cycle that are relevant here. 

In unsteady flow, instantaneous streamlines and vorticity contours are not 
necessarily coincident, as they are in steady inviscid flow. The vorticity contour plots 
corresponding to figure 3 are given in figure 4, and can be compared with the viscous 
flow results shown in figure 8 of 111. The method of determining contour values of the 
vorticity was the same as that used in 111. 

There is approximate coincidence of streamlines and vorticity contours in the flow 
near the centre of the channel, which suggests that the flow there is essentially quasi- 
steady. A measure of the importance of unsteadiness in a flow is the local Strouhal 
number, i.e. lengthscale divided by frequency times typical local velocity; in the 
centre of the channel this is comparable with the overall Strouhal number, St, which 
is small, consistent with quasi-steady flow. Nearer the walls, however, the local 
velocity is small so the local Strouhal number is not, and it is therefore not surprising 
to observe significant differences between streamlines and vorticity contours. 

It should be noted that, in inviscid flow, vorticity contours are identified with 
material lines, and thus no breaking of these contours is possible. However, owing to 
the finite resolution of the grid, contour breaking does occur in our computations 
when material lines are sufficiently ‘wound up’ by nonlinear processes. This is not 
believed to affect the overall flow structure since the size of the grid, which 
determines when contour breaking occurs, does not itself affect the structure 
significantly. 

It is of interest to consider the vorticity dynamics of a single, typical eddy, eddy 
B, say. We observe initially a local thickening of the region of high vorticity near the 
wall (figure 4a-c), and this process leads to the formation of closed streamlines (figure 
3 d ) .  As the thickening continues, the vorticity in the area bounded by closed 
streamlines remains almost uniform until about t = 0.60 (figure 49) .  Subsequently, 
strips of fluid from the core are wound convectively about the eddy centre, 
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FIGURE 4. Instantaneous vorticity contour plots for a typical iiiviscid flow (St = 0.037, E = 0.38, 
upstream flow rate fixed): (a)  &,,, = 5.67, gmi, = -6.00; (b)  5.71, -6.11 ; ( c )  5.74, -6.44; (d )  5.77, 
-6.13; ( e )  5.86, -6.26; (f) 6.06, -6.37; (9) 6.11, -6.40; (h)  6.41, -6.40; ( i )  6.14, -6.80; (j) 6.25, 
-6.80; (k) 6.50. -6.76; ( I )  6.74, -6.65. 
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FIGURE 5.  Positions of crests/troughs corresponding to eddies B, C and D as functions of time in 
flows with E = 0.38 and St = 0.037, and with upstream flow rate fixed. Solid curves and dash-dotted 
curves show numerical results for inviscid and viscous (Re = 507) flow, respectively. The dashed 
curves show the predictions of the simple theory. The trifurcations in the viscous curves indicate 
multiple turning points in the centreline stream function, corresponding to incipient and actual 
eddy doubling (see 111). 

representing a strongly nonlinear process. Artificial (numerical) contour breaking 
then leads to closed vorticity contours being created (e.g. eddies A and C in figure 41). 

Finally, we can make a quantitative comparison between the viscous and inviscid 
solutions, and the small-amplitude. inviscid theory of I and 11, by plotting the 
positions of the wave crests as functions of time. In the theory a crest is defined as 
a turning point of the displacement function A ( z ,  t ) ,  while in the numerical solution 
it is identified with a turning point of the axial variation in the centreline stream 
function. In figure 5 the positions of the crests corresponding to eddies B, C and D 
are plotted. We can see that the full Euler solution does not agree well with the small- 
amplitude inviscid theory, except insofar as the mean phase velocity of the waves is 
close to its theoretical value. The wavelength however is shorter than in the viscous 
flow (especially late in the cycle) whereas the theory gave larger values. Also a quasi- 
sinusoidal oscillation in crest position is superimposed on the average phase velocity. 
These results indicate that finite-amplitude effects are important, and the oscillation 
in particular suggests that the acceleration and deceleration of the downstream flow 
is a major source of disagreement between the Euler solution and the theory (see the 
footnote in $7.1).  

However, agreement with the viscous solution is also poor, indicating a significant 
effect of viscosity despite the Reynolds-number independence of the experimental 
(viscous) crest positions. This is further discussed below. 
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5. Results: effect of up- or downstream flow acceleration 
As in the last section, we first discuss the computed flow patterns (in the form of 

streamline plots) to investigate any qualitative differences that might be attributable 
to bulk acceleration/deceleration upstream as opposed to downstream. We than go 
on to examine quantitative differences in crest positions. 

In the case of an inviscid fluid the flow structure with downstream flow rate fixed 
is qualitatively very similar to that with upstream flow rate fixed. With Xt = 0.037 
and .c = 0.38, as for figure 2,  the amplitude and wavelength of the wave are the same 
as shown there. The only difference lies in the rate of axial growth of eddy A, which 
is less rapid, during the first half of the flow cycle, in the case with the downstream 
flow rate fixed. This leads to a slower rate of propagation of the crests/troughs 
further downstream, and is accompanied by a reduced speed of propagation of the 
wave front (see figure 7 ,  below). The lack of any significant effect is not surprising 
because acceleration of the bulk flow, in a parallel-sided region of the channel located 
further than O(a) from the indentation, merely involves the superposition of a time- 
dependent but spatially uniform velocity on to the previously existing flow. The 
vorticity distribution will remain unchanged, relative to a frame of reference moving 
with this velocity. 

In  viscous flow, the differences between flows with fixed up- and downstream flow 
rates are more marked. Figure 6 shows instantaneous streamline plots in a typical 
flow with constant flow rate downstream of the indentation, and the parameters 
precisely match those of the flow shown in figure 4 of 111, which differs only in that 
the upstream flow rate is fixed in that case. First, and most importantly, we note that 
a vorticity wave and a number of eddies are clearly seen in figure 6, proving, as was 
thought to  be the case, that  the wave does not rely on the destabilizing effect of 
deceleration for its genesis. On the other hand, the wave amplitude increases much 
more slowly in figure 6 than in figure 4 of 111, and never attains the magnitude shown 
there; furthermore the wave front propagates along the channel more slowly. The 
eddies are much less vigorous in the fixed-downstream-flow case: for example, a t  
t = 0.60, ($max- 1),  representing the strength of eddy B, takes the values 0.015 and 
0.109 in the fixed down- and upstream flow rate cases respectively. Finally, we note 
that the eddies shown in figure 6 do not exhibit doubling. 

Thus, acceleration/deceleration of the viscous flow downstream of the indentation 
is seen to result in an amplification of the vort'icity wave and a strengthening of the 
associated eddies. At least two mechanisms may be causally involved in this effect. 
First, there is enhanced generation of vorticity a t  the walls for t < 0.25, compared 
with the fixed downstream flow rate case, because the acceleration of the flow 
generates an increased wall shear rate. This vorticity presumably contributes to the 
strengths of t,he eddies. Secondly, the flow downstream of the indentation is 
decelerating for t between 0.25 and 0.75, and deceleration of channel or boundary- 
layer flows is well known to make them more unstable, a t  least in linear theory, with 
much more rapid growth of Rayleigh or Tollmien-Schlichting waves, because of the 
presence of a point of inflection in the velocity profile (Obremski, Morkovin & 
Landahl 1969; Hall & Parker 1976; Gad-el-Hak et al. 1984). As discussed in 11 and 
111, our vorticity wave can be thought of as a form of Tollmien-Schlichting wave. 
Moreover, Sobey (1980, 1983) studying flow in wavy-walled channels, has shown that 
finite-amplitude eddies grow more rapidly during deceleration, the rate of growth 
increasing with Xt. 

The results for the crest positions corresponding to eddies B, C and D are presented 
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FIGURE 6. Instantaneous streamline plots for a viscous flow in which the downstream flow rate is 
fixed (Re = 507, St = 0.037, E = 0.38): (a) $.,,, = 1.000, $,,,,n = 0;  ( b )  1.000, -0.005; (c) 1.000, 
-0.024; (d )  1.001, -0.032; (e) 1.004, -0.037; (f) 1.010, -0.035; (9 )  1.015, -0.032; (h) 1.015, 
-0.045; (i) 1.011, -0.053; ( j )  1.005, -0.055; (k) 1.000, -0.032; (I) 1.000, 0. 
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in figure 7. As in figure 5, the dashed curves are the results of the small-amplitude 
inviscid theory, while the dash-dotted curves come from the Navier-Stokes solutions 
with upstream flow rate fixed, as in the experiments (the trifurcations in these curves 
represent eddy doubling, as discussed in 111). Superimposed on these are the viscous 
(solid) and inviscid (dotted) curves for fixed downstream flow rate. The dimensionless 
parameters are unchanged. Considering first the viscous curves, we note that there 
is very little difference between the two cases, with upstream or downstream flow 
rate fixed, until about t = 0.65. Thereafter i t  is noticeable that the average phase 
speeds of the crests are greater when the downstream flow rate is fixed rather than 
pulsating, and that this leads to worse agreement with the simple theory. 

Next we compare the viscous and inviscid results with downstream flow rate fixed, 
and this is particularly revealing because there is essentially no difference between 
the curves until late in the cycle, especially for eddy B. Keeping the downstream flow 
rate fixed means that the vorticity distribution present before the waves arrive a t  a 
particular location is the same in the two cases so this result reinforces the conclusion 
that wave generation and propagation does not depend on the presence of viscosity. 
It is also interesting that, when a discrepancy does develop, the waves propagate 
faster in a viscous fluid. A possible mechanism for this is discussed in $7 .  A 
consequence of this effect is that the inviscid results are in slightly better agreement 
than the viscous ones with the small-amplitude theory. Early in the flow cycle this 
agreement is very good (e.g. t < 0.4 for eddy B, t < 0.3 for eddy C), and certainly 
much better than for the inviscid case with upstream flow rate fixed (figure 5). Later 
in the flow cycle, however, none of the results agree well with the theory. 
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FIQURE 8. Instantaneous streamline plots for a small-amplitude inviscid flow with downstream 
flow rate fixed (St = 0.037, B = 0.1): (a) = 1.000, = 0;  ( b )  1.000, -0.003; (c) 1.001, 
-0.009: ( d )  1.004, -0.014; ( e )  1.006, -0.015; (f) 1.006, -0.009. 

6. Results: effects of varying amplitude 
As before, we consider the qualitative flow patterns first, and wave crest positions 

later. As e is decreased, the amplitude of the wave decreases too, so that, for example, 
in viscous flow with upstream flow rate fixed and the same values of Re and St as in 
the flow of figure 6, all the eddies except for eddy A disappear when e = 0.2, although 
wave crests and troughs can still be detected. When e = 0.1, the wave itself is 
undetectable. In the corresponding flow with downstream flow rate constant, the 
core wave is weaker still for values of E of 0.2 or less. Increasing e leads to an increase 
in the amplitudes and strengths of the eddies, with (@max - @) taking the value 0.216 
a t  t = 0.6 in a flow with E = 0.5, Re = 507, St = 0.037 and upstream flow rate fixed, 
compared with 0.109 for E = 0.38. 

I n  inviscid flow, waves and eddies are still found a t  the lowest value of e 
considered, E = 0.1, with either up- or downstream flow rate fixed ; figure 8 shows a 
flow under the latter condition. The transverse dimensions of the eddies are of the 
same order of size as E ,  whilst in axial extent they are, except for eddy A, somewhat 
larger than their counterparts in higher-amplitude flows (see figure 3, above). Eddy 
A is rather smaller in axial extent, and all of the eddies are weaker in the lower-e case. 
Values of E greater than 0.38 have not been considered in inviscid flow. 

The effect of changing E on the crest positions in viscous flow is shown in figure 9, 
where the results for e = 0.2 and upstream flow rate fixed are compared with the 
standard results for e = 0.38 (Re and St taking the same values as for figure 7 )  and 
with the small-amplitude inviscid theory. The main conclusion to be drawn is that, 
apart from the fact that individual crests are detected later when E is smaller, the 
change in E has very little effect. Reducing the amplitude in the Navicr-Stokes 
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solution does not improve agreement with the theory. A similar result was observed 
experimentally (11, figure 11). A comparably small change was computed when E was 
increased to 0.5, and a similarly weak dependence on E was found when downstream 
flow rate was held fixed instead of upstream. Thus large-amplitude effects are 
unlikely to be the principal cause of the discrepancy between the theory and the full 
Navier-Stokes solutions. In  particular, since eddies are found for E = 0.38 and not for 
E = 0.2, the wave crest positions do not appear to be significantly affected by the 
presence or otherwise of eddies. 

In  inviscid flow, on the other hand, changing the amplitude makes a big difference. 
This can be seen from figures 10 and 11, where the crest positions are shown for 
E =0.38, E =  0.2 and E = 0.1 in the two cases of fixed upstream (figure 10) and 
downstream (figure 11) flow rate. (The same theoretical curves, calculated with 
E = 0.38, are included in all cases, because the dependence of crest positions on E ,  

according to the theory, is extremely weak; see figure 18 of 11.) In figure 10 the 
reduction in E leads to improved agreement on crest mean phase velocities, though 
not on their positions, with the crests being shifted upstream in general. In figure 11, 
the effect of changing E is clearly seen, with phase speeds being reduced dramatically 
as E decreases, except in the early part of the flow cycle. Indeed, the predictions of 
the position of eddy B from the theory and inviscid numerical solutions for E = 0.2 
are now in excellent agreement, and the phase velocities for all crests agree well a t  
this amplitude. The wavelengths derived from the full Euler solution increase as E 

decreases, but they remain somewhat shorter than those predicted by the theory, 
even a t  E = 0.1. In  fact, the results a t  E = 0.1 show slightly worse agreement with the 
theory, a t  least for the position of crest B, than those a t  E = 0.2. Thus in seeking 
mechanisms to account for any discrepancies, we should expect that a t  least two 
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FIGURE 10. Positions of crests/troughs corresponding to eddies B, C and D as functions of time in 
inviscid flows with upstream flow rates fixed. The dash-dotted, solid and dotted curves show 
numerical results for E = 0.38, E = 0.2 and E = 0.1 respectively. 
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FIGURE 11 .  Positions of crests/troughs corresponding to eddies B. C and D as functions of time in 
inviscid flows with downstream flow rates fixed. The dash-dotted, solid and dotted curves show 
numerical results for E = 0.38, E = 0.2 and E = 0.1 respectively. 
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effects will be involved, acting in opposite senses and dominant at different 
amplitudes. Nonetheless, the degree of correspondence in figures 10 and 11 adds to 
our confidence in both the theory and the numerical procedure for the Euler 
equations. 

Finally we note the marked contrast that exists between the viscous and the 
inviscid results. Figure 9 shows very little dependence of crest positions on E, whilst 
figure 11 exhibits a very strong amplitude effect. This difference is discussed 
below. 

7. Discussion 
The first conclusion of this paper is the confirmation that vorticity waves are 

generated downstream of a time-dependent indentation in an inviscid fluid as they 
are in a viscous fluid. Also, eddies are formed between the wave crests and the 
channel walls, although their structure is rather different from those found in the 
viscous case. I n  particular, eddy doubling does not occur in an inviscid flow, although 
this phenomenon is not purely viscous since, as argued in 111, inviscid advection of 
vorticity plays a vital part, and thus a strong interaction of viscous and inviscid 
effects is involved in the process. In this section we further discuss possible reasons 
for the discrepancies between the inviscid, Euler equation solutions and ( i )  the small- 
amplitude theory, (ii) the viscous, Navier-Stokes solutions. 

7.1 . Comparison between Euler solutions and theory 

The theory presented in I and I1 was also based on the Euler equations, coupled with 
a small-amplitude (E) and frequency (8t) approximation which led to the leading- 
order perturbation to the oncoming parabolic velocity profile being a quasi-steady 
lateral displacement. This was represented by a function A(%, t )  which was shown at  
second order (in E) to satisfy the linearized Kortewegde Vries equation, downstream 
of the indentation. The full Euler solutions indeed reveal quasi-steady flow in the 
core of the channel, where vorticity contours and streamlines are approximately 
coincident (figures 3 and 4), but there is a marked discrepancy near the wall, because 
the local Strouhal number is not small. Equivalently, the small-amplitude 
approximation of the theory is not uniformly valid near the wall because the 
unperturbed velocity tends to zero there and the perturbation does not, As shown in 
11, the leading, O(E), terms of the inviscid small-e expansion in the resulting critical 
layer a t  the wall are the same as assumed in the theory, but the error is O(e2 log E )  

instead of O(e2) .  Thus a departure from the theoretical results is to be expected at  
finite E ,  but one might still expect it to diminish as E becomes small, especially if the 
downstream flow rate is held fixed instead of the upstream. (As we have seen 
(figure lo), acceleration and deceleration of the downstream flow, although an O(2) 
effect, causes a marked sinusoidal variation in wave crest position to be superimposed 
on that associated with the vorticity waves alone, even for E = 0.lt .)  

t It has been pointed out by Dr S. J. Cowley that  the sinusoidal acceleration and deceleration 
of the downstream flow can be incorporated into the small-amplitude theory, at O ( E )  if the 
dimensionless length of the indentation is formally taken t o  be O ( E - ~ )  instead of O ( E - ~ ) .  The equation 
governing the dimensionless core-flow displacement, equal t o  EA (5, t ) .  then becomes 

where @‘(r,t) = q ( z )  h( t )  is the wall displacement and I = ~( lOSt) t J?~o, ( r )dz .  This differs from 
equation (17) of I1 by the inclusion of the second term. In  the region downstream of the 
indentation, where F = 0, (6) is the same linearized Korteweg-de Vries equation as analysed in 11, 

A,,, - Zx sin 2xt A - A  = + (FF, + AF, + FAz), (6) 
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Figure 11 indeed shows a dramatic improvement in the agreement between the 
numerical (Euler) solution and the theory as e is reduced from 0.38 to 0.2, with 
downstream flow rate fixed, especially as regards the position of wave crest B. What 
remain to be explained are ( a )  why the agreement does not improve further as E is 
reduced to 0.1, ( 6 )  why the theory significantly overestimates the wavelength, and ( c )  
why, when c = 0.38, the phase speed of the wave crests increases almost 
discontinuously (at t - 0.4) from the theoretical value to a roughly constant value 
about twice as great. The explanations could lie in physical effects, significant even 
when e = 0.1, that would be incorporated in the theory a t  higher order in e but do 
not arise a t  the order taken in I1 ; acceleration/deceleration of the mean flow when 
downstream flow rate is not fixed would come in this category. Alternatively, they 
could represent the fact that the theory is not strictly applicable to the problem in 
question, even at small e. 

An explanation in the first category is the interaction of an eddy, or rather of a 
perturbation to the vorticity field, with its images in the channel walls. It is well 
known that a point vortex in an otherwise irrotational semi-infinite fluid moves 
parallel to a bounding plane wall, and a similar phenomenon is observed for ‘fronts’ 
of distributed vorticity (Stern & Pratt  1985). It is expected that the same effect will 
influence the present flows, although the fact that there are two walls gives rise to an 
infinite set of image vortices corresponding to each eddy. This effect does not arise 
in the theory of 11, because i t  requires a perturbation to the vorticity, of O(E) at most, 
to be advected by a perturbation to the velocity field which exists because of the 
zero-normal-velocity boundary condition on the channel wall. Such a velocity 
perturbation is no larger than O ( 2 )  (the O(e) perturbation satisfies the boundary 
condition-see 11) so the relevant interaction will not arise before O(e3) in the 
vorticity transport equation, whereas the theory goes up only to O(e2). If, as it 
appears from figure 4, the vorticity in an eddy is greater than and of the same sign 
as the unperturbed vorticity a t  the same distance from the wall, and since the 
dominant interaction will be with the closest image in the wall, then this effect will 
result in an upstream shifting of the wave crests. Because eddy B is the strongest 
(with the possible exception of eddy A) the effect should be most marked for eddy B. 

An explanation in the second category is related to the fact that the theory 
requires the flow to be slowly varying in the streamwise direction, i.e. the lengthscale 
of longitudinal variations, ha,  should be large compared with a :  h = ( los t ) - ;  = 

O(ed).  This is consistent with the observed and computed wave patterns some way 
downstream of the indentation, but not with the geometry of the indentation itself. 
Specifically, the dimensionless length over which the indentation height falls from 
0 . 9 9 ~  to 0 . 0 1 ~  is between 1.1 and 1.2, which is not large compared with 1. The 
consequence will be an error in the theoretical flow pattern, and this error is likely 
to be most marked in the vicinity of the indentation, i.e. in the predicted form of 
eddy A. (It was noted in $ 5  that the main difference between cases with upstream 
and downstream flow rate fixed lay in the size of eddy A.) The theoretical results 
show the region occupied by eddy A to be shorter than eddy B, and the displacement 
of the core flow to be less above eddy A than above eddy B (this can be seen from 
figure 15 of 11, which corresponds to a larger value of St, 0.057, than the flows 
computed here, but similar results were also obtained for St = 0.037). In  our 

but relative to a frame of reference accelerating and decelerating with the mean velocity. For the 
particular case analysed in this paper (st = 0.037) I z 7.56, so even for B = 0.1 the importance of 
the acceleration term is confirmed. 
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FIGURE 12. Positions of crests/trougha corresponding to eddies B, C and D as functions of time in 
inviscid flow, with B = 0.38, downstream flow rate fixed, modified according to the growth of eddy 
A (see text). 

computations the reverse is true and the theory is not successful in predicting 
eddy A. 

Thus, in assessing the equivalence of the theory and the Euler equation 
computations, we should adjust the positions of eddies B, C and D according to the 
growth of eddy A. Figure 11 shows the large-amplitude (e  = 0.38) Euler solution 
(with downstream flow fixed) and small-amplitude theory to  be in good agreement 
for eddy B for times up to about 0.4. If thereafter we subtract changes in the position 
of the reattachment point of eddy A from the positions of eddies B, C and D, the 
results are as shown in figure 12. Note that no adjustment to the theoretical 
predictions is made since the movement of ‘eddy’ A in the theory is small (11). The 
result is dramatic, in that the acceleration of eddies B, C and D, remarked on above, 
has been totally abolished, and indeed there seems to have been an over-correction 
since none of the eddies moves downstream as rapidly as in the theory. The mean 
phase velocity of wave B is slightly lower than that of C which is in turn lower than 
that of D. We attribute these reductions in phase velocity to  the eddy-image 
interaction effect discussed above, which is expected to be weaker for the further 
downstream eddies. 

The eddy-image interaction effect is also seen to have an influence on crest 
locations at  smaller values of e,  as seen in the e = 0.1 curves of figure 11, where it 
dominates the effect of the growth of eddy A. At intermediate values of e ,  the two 
effects may be almost balanced, as suggested by the excellent agreement with the 
theory for eddy B when E = 0.2 (figure 11). 

It remains to seek an explanation for the wavelength in the numerical solution 
being significantly shorter than in the theory, even a t  small E .  The only aspect of the 
theory which is obviously wrong a t  small e is the slowly varying assumption ( A  + l),  
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with the consequence that eddy A grows more rapidly than predicted, a t  least later 
in the cycle and with downstream flow rate fixed. The wave front will continue to 
propagate downstream at  roughly the mean fluid speed (see II), so if the same 
number of waves are generated between eddy A and the wave front, one would 
expect some reduction in wavelength when eddy A is growing faster. A more 
quantitative explanation is not available, however. 

7.2. Further discussion of the viscous flows 
Perhaps the most striking features of the viscous vis-&-vis the inviscid solutions, 
when downstream flow rate is fixed, are that (i) when G = 0.38 the crest positions 
agree closely until quite late in the cycle; thereafter the waves propagate more 
rapidly in the viscous fluid (figure 7) ; (ii) a reduction in amplitude has a negligible 
effect on crest positions in a viscous fluid, while its effect is significant in an inviscid 
fluid ($6 and figure 11).  Observation (i) suggests not only that the wave generation 
and propagation processes well downstream of the indentation are the same in the 
two cases, but that the factors determining the length of eddy A as a function of time 
are also the same. The former is not unexpected, since the initial vorticity 
distribution is the same and is not modified in the viscous fluid by bulk flow 
accelerations ($5). The latter, however, is surprising because the mechanism by 
which eddy A is generated cannot be the same in the two fluids. The more rapid wave 
propagation towards the end of the cycle in a viscous fluid is presumably due to a 
reduction in the vortex-image interaction caused by vorticity diffusion in a viscous 
fluid. 

In a viscous fluid a t  large Reynolds number an eddy such as eddy A is generally 
thought to be formed as a result of breakaway separation in an adverse pressure 
gradient, with subsequent ejection of some vorticity from close to the boundary into 
the flow further out, and formation of a vortex sheet a t  the edge of the eddy. This 
process is essentially the same in internal as in external flow (Smith 1979; Bertram 
& Pedley 1983). In  steady flow the length of the separated eddy downstream of an 
indentation in a channel becomes proportional to the Reynolds number Re as Re is 
increased (Smith & Duck 1980). The shear layer becomes parallel to the boundary, 
and the flow in the eddy is very sluggish. One might interpret the flat top of the 
lengthening eddy A in the viscous streamline plot (figure 6) as evidence that most of 
eddy A tends to conform with the above (quasi-steady) picture, although the 
concentration of closed streamlines, and the slope of the separation streamline, at the 
downstream end of that eddy shows that the reattachment process is not quasi- 
steady. 

This picture, however, does not take account of the fact that  an ‘eddy A’ region 
of closed streamlines forms in an inviscid fluid and the mechanism of its formation 
must be associated with the deformation and rolling up of undisturbed vortex lines 
and cannot be related to the ‘classical’ breakaway separation. It would be of 
considerable interest to see a detailed model of unsteady separation in rotational 
flow, in which the competing effects of breakaway vorticity ejection and roll-up of 
background vorticity were analysed together. In our case, the fact that the lengths 
of eddy A and the positions of eddy B are the same in the viscous and the inviscid 
calculations, a t  the larger values of G, suggests that the behaviour near reattachment 
is dominated by unsteady vortex dynamics and not by viscous effects. 

A t  smaller amplitudes, on the other hand, the inviscid eddy A becomes shorter, 
while the viscous one remains the same length, although the wave pattern becomes 
extremely weak with downstream flow rate fixed ($6). Two comments can be made 
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about this: (a )  the no-slip condition inevitably has a more marked effect on the weak 
separated eddy of small thickness when E is small than on the strong, thick eddy at  
larger E ;  and ( b )  the tendency of the disturbed vorticity distribution to roll up and 
form an inviscid eddy is clearly reduced as E becomes small. 

We return finally to the solutions that correspond to the experiments of I and 
11, for a viscous fluid with upstream flo'w rate fixed. We have seen that ac- 
celeration/deceleration of the downstream flow causes a marked increase in the 
strengths of the waves and eddies (figure 6 compared with figure 4 of 111) but that 
it has little effect on their positions, until t sz 0.65 (figure 7) ,  which are virtually 
independent of E a t  all times (figure 9), in marked contrast to the inviscid case (figure 
10). Agreement between viscous and inviscid crest positions is poor, even early in the 
cycle, unlike the case of fixed downstream flow rate. As discussed in 95, the 
differences are attributable (a)  to the fact that the no-slip condition causes fresh 
vorticity (of alternating sign through the cycle) to be generated at the walls as the 
bulk flow is accelerated or decelerated, changing the basic vorticity distribution on 
which the vorticity waves are formed, and ( 6 )  to the amplification of the vorticity (or 
Tollmien-Schlichting) wave in the decelerative phases of the flow. A further 
difference, related to (a ) ,  is that the vortex-image interaction will be more complex, 
on account of the large amount of negative vorticity generated under the strong 
positive recirculation regions a t  the downstream ends of the eddies (see 111, figure 8), 
which would tend to reduce the upstream velocity induced by the images. Eddy A 
grows in length throughout the cycle, and much of i t  remains parallel sided (111, 
figure 4), indicating the possible importance of quasi-steady, viscous separation 
dynamics there. The fact that crest positions are independent of E reinforces the view 
that the presence of viscosity is an important determinant of the structure of eddy 
A, although the fact that they are independent of Re (in the range studied in 111) 
shows that the magnitude of the viscosity is unimportant. 

The authors are grateful to J. W. Elliott and 0. R.  Tutty for valuable discussions, 
particularly regarding the numerical methods. We acknowledge, with thanks, the 
financial support of the SERC. 

Appendix. Numerical filtering and boundary conditions 
In the vorticity transport equation for inviscid flow, the criterion for filtering in 

either direction can be illustrated as follows, with nodes identified as in figure 13 (a). 
If C A ,  etc. denote the nodal values of 5 before filtering, and ACAB represents (CB - C A )  
etc., then we filter a t  node G only if 

and 

If filtering is to be carried out a t  C, then new values of 5 at B,  C and L), cB, cc and cD, are determined by 
(A 4) t B  = C B + O . I A C B c ,  

and 

which represent a viscous-like correction. This is precisely the method of Myers et al. 
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FIGURE 13. Nomenclature for nodes used in description of filtering and in expression for wall 
vorticity: (a) filtering at an internal point; (b) filtering near a wall; (c) vorticity at upper wall; (d) 
vorticity at lower wall. 

(1981), but we have taken special action when filtering in the y-direction in the 
neighbourhood of a wall : a node a t  the wall was assumed not to satisfy the criterion 
for y-direction filtering, whilst an adjacent node was required to fulfil inequalities 
( A  1 )  and ( A 2 )  only, with the notation of figure 13(b ) .  Corrections were added 
according to (A4)-(A 6). Finally, we note that no ‘cosmetic’ filtering of results was 
carried out. 

The finite-difference expressions for the vorticity a t  the walls in inviscid flow are 
as follows, with nodes labelled as in figures 13(e) and 13(d), for the upper 
(unindented) and lower (indented) walls respectively. For the upper wall we have 

and for the lower wall 
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